Research articles of Tino Krell related to signal sensing by receptors

Definition of signal-specific receptor families

67) Monteagudo-Cascales E, Gavira JA, Xing J, Velando F, Matilla MA, Zhulin IB, Krell T. Bacterial sensor evolved by decreasing complexity. Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2409881122. doi: 10.1073/pnas.2409881122. Epub 2025 Jan 29. PubMed PMID: 39879239; PubMed Central PMCID: PMC11804620.

66) Monteagudo-Cascales E, Gumerov VM, Fernández M, Matilla MA, Gavira JA, Zhulin IB, Krell T. Ubiquitous purine sensor modulates diverse signal transduction pathways in bacteria. Nat Commun. 2024 Jul 12;15(1):5867. doi: 10.1038/s41467-024-50275-3. PubMed PMID: 38997289; PubMed Central PMCID: PMC11245519.

65) Cerna-Vargas JP, Gumerov VM, Krell T, Zhulin IB. Amine-recognizing domain in diverse receptors from bacteria and archaea evolved from the universal amino acid sensor. Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2305837120. doi: 10.1073/pnas.2305837120. Epub 2023 Oct 11. PubMed PMID: 37819981; PubMed Central PMCID: PMC10589655.

64) Gumerov VM, Andrianova EP, Matilla MA, Page KM, Monteagudo-Cascales E, Dolphin AC, Krell T, Zhulin IB. Amino acid sensor conserved from bacteria to humans. Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2110415119. doi: 10.1073/pnas.2110415119. Epub 2022 Mar 1. PubMed PMID: 35238638; PubMed Central PMCID: PMC8915833.

Solute-binding proteins

63) Cerna-Vargas JP, Krell T. Exploring solute binding proteins in Pseudomonas aeruginosa that bind to γ-aminobutyrate and 5-aminovalerate and their role in activating sensor kinases. Microbiologyopen. 2024 Jun;13(3):e1415. doi: 10.1002/mbo3.1415. PubMed PMID: 38780167; PubMed Central PMCID: PMC11113362.

62) Cerna-Vargas JP, Sánchez-Romera B, Matilla MA, Ortega Á, Krell T. Sensing preferences for prokaryotic solute binding protein families. Microb Biotechnol. 2023 Sep;16(9):1823-1833. doi: 10.1111/1751-7915.14292. Epub 2023 Aug 7. PubMed PMID: 37547952; PubMed Central PMCID: PMC10443332.

61) Fernández M, Rico-Jiménez M, Ortega Á, Daddaoua A, García García AI, Martín-Mora D, Torres NM, Tajuelo A, Matilla MA, Krell T. Determination of Ligand Profiles for Pseudomonas aeruginosa Solute Binding Proteins. Int J Mol Sci. 2019 Oct 17;20(20). doi: 10.3390/ijms20205156. PubMed PMID: 31627455; PubMed Central PMCID: PMC6829864.

60) Ortega Á, Matilla MA, Krell T. The Repertoire of Solute-Binding Proteins of Model Bacteria Reveals Large Differences in Number, Type, and Ligand Range. Microbiol Spectr. 2022 Oct 26;10(5):e0205422. doi: 10.1128/spectrum.02054-22. Epub 2022 Sep 19. PubMed PMID: 36121253; PubMed Central PMCID: PMC9602780.

Chemoreceptors

59) Xu W, Cerna-Vargas JP, Tajuelo A, Lozano-Montoya A, Kivoloka M, Krink N, Monteagudo-Cascales E, Matilla MA, Krell T, Sourjik V. Systematic mapping of chemoreceptor specificities for Pseudomonas aeruginosa. mBio. 2023 Oct 31;14(5):e0209923. doi: 10.1128/mbio.02099-23. Epub 2023 Oct 4. PubMed PMID: 37791891; PubMed Central PMCID: PMC10653921.

58) Velando F, Matilla MA, Zhulin IB, Krell T. Three unrelated chemoreceptors provide Pectobacterium atrosepticum with a broad-spectrum amino acid sensing capability. Microb Biotechnol. 2023 Jul;16(7):1548-1560. doi: 10.1111/1751-7915.14255. Epub 2023 Mar 25. PubMed PMID: 36965186; PubMed Central PMCID: PMC10281358.

57) Monteagudo-Cascales E, Ortega Á, Velando F, Morel B, Matilla MA, Krell T. Study of NIT domain-containing chemoreceptors from two global phytopathogens and identification of NIT domains in eukaryotes. Mol Microbiol. 2023 Jun;119(6):739-751. doi: 10.1111/mmi.15069. Epub 2023 Apr 25. PubMed PMID: 37186477.

56) Gálvez-Roldán C, Cerna-Vargas JP, Rodríguez-Herva JJ, Krell T, Santamaría-Hernando S, López-Solanilla E. A Nitrate-Sensing Domain-Containing Chemoreceptor Is Required for Successful Entry and Virulence of Dickeya dadantii 3937 in Potato Plants. Phytopathology. 2023 Mar;113(3):390-399. doi: 10.1094/PHYTO-10-22-0367-R. Epub 2023 Mar 27. PubMed PMID: 36399025.

55) Monteagudo-Cascales E, Martín-Mora D, Xu W, Sourjik V, Matilla MA, Ortega Á, Krell T. The pH Robustness of Bacterial Sensing. mBio. 2022 Oct 26;13(5):e0165022. doi: 10.1128/mbio.01650-22. Epub 2022 Sep 26. PubMed PMID: 36154178; PubMed Central PMCID: PMC9600550.

54) Santamaría-Hernando S, López-Maroto Á, Galvez-Roldán C, Munar-Palmer M, Monteagudo-Cascales E, Rodríguez-Herva JJ, Krell T, López-Solanilla E. Pseudomonas syringae pv. tomato infection of tomato plants is mediated by GABA and l-Pro chemoperception. Mol Plant Pathol. 2022 Oct;23(10):1433-1445. doi: 10.1111/mpp.13238. Epub 2022 Jun 10. PubMed PMID: 35689388; PubMed Central PMCID: PMC9452764.

53) Rico-Jiménez M, Roca A, Krell T, Matilla MA. A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones. Environ Microbiol. 2022 Aug;24(8):3580-3597. doi: 10.1111/1462-2920.15920. Epub 2022 Feb 1. PubMed PMID: 35088505; PubMed Central PMCID: PMC9543091.

52) Feng H, Lv Y, Krell T, Fu R, Liu Y, Xu Z, Du W, Shen Q, Zhang N, Zhang R. Signal binding at both modules of its dCache domain enables the McpA chemoreceptor of Bacillus velezensis to sense different ligands. Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2201747119. doi: 10.1073/pnas.2201747119. Epub 2022 Jul 13. PubMed PMID: 35858353; PubMed Central PMCID: PMC9303924.

51) Matilla MA, Velando F, Tajuelo A, Martín-Mora D, Xu W, Sourjik V, Gavira JA, Krell T. Chemotaxis of the Human Pathogen Pseudomonas aeruginosa to the Neurotransmitter Acetylcholine. mBio. 2022 Apr 26;13(2):e0345821. doi: 10.1128/mbio.03458-21. Epub 2022 Mar 7. PubMed PMID: 35254130; PubMed Central PMCID: PMC9040839.

50) Sanchis-López C, Cerna-Vargas JP, Santamaría-Hernando S, Ramos C, Krell T, Rodríguez-Palenzuela P, López-Solanilla E, Huerta-Cepas J, Rodríguez-Herva JJ. Prevalence and Specificity of Chemoreceptor Profiles in Plant-Associated Bacteria. mSystems. 2021 Oct 26;6(5):e0095121. doi: 10.1128/mSystems.00951-21. Epub 2021 Sep 21. PubMed PMID: 34546073; PubMed Central PMCID: PMC8547431.

49) Gavira JA, Matilla MA, Fernández M, Krell T. The structural basis for signal promiscuity in a bacterial chemoreceptor. FEBS J. 2021 Apr;288(7):2294-2310. doi: 10.1111/febs.15580. Epub 2020 Oct 27. PubMed PMID: 33021055.

48) Gavira JA, Gumerov VM, Rico-Jiménez M, Petukh M, Upadhyay AA, Ortega A, Matilla MA, Zhulin IB, Krell T. How Bacterial Chemoreceptors Evolve Novel Ligand Specificities. mBio. 2020 Jan 21;11(1). doi: 10.1128/mBio.03066-19. PubMed PMID: 31964737; PubMed Central PMCID: PMC6974571.

47) Cerna-Vargas JP, Santamaría-Hernando S, Matilla MA, Rodríguez-Herva JJ, Daddaoua A, Rodríguez-Palenzuela P, Krell T, López-Solanilla E. Chemoperception of Specific Amino Acids Controls Phytopathogenicity in Pseudomonas syringae pv. tomato. mBio. 2019 Oct 1;10(5). doi: 10.1128/mBio.01868-19. PubMed PMID: 31575767; PubMed Central PMCID: PMC6775455.

46) Martín-Mora D, Ortega Á, Matilla MA, Martínez-Rodríguez S, Gavira JA, Krell T. The Molecular Mechanism of Nitrate Chemotaxis via Direct Ligand Binding to the PilJ Domain of McpN. mBio. 2019 Feb 19;10(1). doi: 10.1128/mBio.02334-18. PubMed PMID: 30782655; PubMed Central PMCID: PMC6381276.

45) Feng H, Zhang N, Fu R, Liu Y, Krell T, Du W, Shao J, Shen Q, Zhang R. Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteria. Environ Microbiol. 2019 Jan;21(1):402-415. doi: 10.1111/1462-2920.14472. Epub 2019 Jan 8. PubMed PMID: 30421582.

44) Corral-Lugo A, Matilla MA, Martín-Mora D, Silva Jiménez H, Mesa Torres N, Kato J, Hida A, Oku S, Conejero-Muriel M, Gavira JA, Krell T. High-Affinity Chemotaxis to Histamine Mediated by the TlpQ Chemoreceptor of the Human Pathogen Pseudomonas aeruginosa. mBio. 2018 Nov 13;9(6). doi: 10.1128/mBio.01894-18. PubMed PMID: 30425146; PubMed Central PMCID: PMC6234866.

43) Gavira JA, Ortega Á, Martín-Mora D, Conejero-Muriel MT, Corral-Lugo A, Morel B, Matilla MA, Krell T. Structural Basis for Polyamine Binding at the dCACHE Domain of the McpU Chemoreceptor from Pseudomonas putida. J Mol Biol. 2018 Jun 22;430(13):1950-1963. doi: 10.1016/j.jmb.2018.05.008. Epub 2018 May 11. PubMed PMID: 29758259.

42) Martín-Mora D, Ortega Á, Pérez-Maldonado FJ, Krell T, Matilla MA. The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists. Sci Rep. 2018 Feb 1;8(1):2102. doi: 10.1038/s41598-018-20283-7. PubMed PMID: 29391435; PubMed Central PMCID: PMC5795001.

41) Fernández M, Matilla MA, Ortega Á, Krell T. Metabolic Value Chemoattractants Are Preferentially Recognized at Broad Ligand Range Chemoreceptor of Pseudomonas putida KT2440. Front Microbiol. 2017;8:990. doi: 10.3389/fmicb.2017.00990. eCollection 2017. PubMed PMID: 28620365; PubMed Central PMCID: PMC5449446.

40) Martín-Mora D, Ortega A, Reyes-Darias JA, García V, López-Farfán D, Matilla MA, Krell T. Identification of a Chemoreceptor in Pseudomonas aeruginosa That Specifically Mediates Chemotaxis Toward α-Ketoglutarate. Front Microbiol. 2016;7:1937. doi: 10.3389/fmicb.2016.01937. eCollection 2016. PubMed PMID: 27965656; PubMed Central PMCID: PMC5126104.

39) Corral-Lugo A, De la Torre J, Matilla MA, Fernández M, Morel B, Espinosa-Urgel M, Krell T. Assessment of the contribution of chemoreceptor-based signalling to biofilm formation. Environ Microbiol. 2016 Oct;18(10):3355-3372. doi: 10.1111/1462-2920.13170. Epub 2016 Jan 27. PubMed PMID: 26662997.

38) Martín-Mora D, Reyes-Darias JA, Ortega Á, Corral-Lugo A, Matilla MA, Krell T. McpQ is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexes. Environ Microbiol. 2016 Oct;18(10):3284-3295. doi: 10.1111/1462-2920.13030. Epub 2015 Oct 14. PubMed PMID: 26463109.

37) Rico-Jiménez M, Reyes-Darias JA, Ortega Á, Díez Peña AI, Morel B, Krell T. Two different mechanisms mediate chemotaxis to inorganic phosphate in Pseudomonas aeruginosa. Sci Rep. 2016 Jun 29;6:28967. doi: 10.1038/srep28967. PubMed PMID: 27353565; PubMed Central PMCID: PMC4926252.

36) Fernández M, Morel B, Corral-Lugo A, Krell T. Identification of a chemoreceptor that specifically mediates chemotaxis toward metabolizable purine derivatives. Mol Microbiol. 2016 Jan;99(1):34-42. doi: 10.1111/mmi.13215. Epub 2015 Oct 14. PubMed PMID: 26355499.

35) García V, Reyes-Darias JA, Martín-Mora D, Morel B, Matilla MA, Krell T. Identification of a Chemoreceptor for C2 and C3 Carboxylic Acids. Appl Environ Microbiol. 2015 Aug 15;81(16):5449-57. doi: 10.1128/AEM.01529-15. Epub 2015 Jun 5. PubMed PMID: 26048936; PubMed Central PMCID: PMC4510177.

34) Reyes-Darias JA, García V, Rico-Jiménez M, Corral-Lugo A, Lesouhaitier O, Juárez-Hernández D, Yang Y, Bi S, Feuilloley M, Muñoz-Rojas J, Sourjik V, Krell T. Specific gamma-aminobutyrate chemotaxis in pseudomonads with different lifestyle. Mol Microbiol. 2015 Aug;97(3):488-501. doi: 10.1111/mmi.13045. Epub 2015 May 26. PubMed PMID: 25921834.

33) Reyes-Darias JA, Yang Y, Sourjik V, Krell T. Correlation between signal input and output in PctA and PctB amino acid chemoreceptor of Pseudomonas aeruginosa. Mol Microbiol. 2015 May;96(3):513-25. doi: 10.1111/mmi.12953. Epub 2015 Mar 4. PubMed PMID: 25641105.

32) Rico-Jiménez M, Muñoz-Martínez F, García-Fontana C, Fernandez M, Morel B, Ortega A, Ramos JL, Krell T. Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the non-protein amino acid gamma-aminobutyrate (GABA). Mol Microbiol. 2013 Jun;88(6):1230-43. doi: 10.1111/mmi.12255. Epub 2013 May 22. PubMed PMID: 23650915.

31) Pineda-Molina E, Reyes-Darias JA, Lacal J, Ramos JL, García-Ruiz JM, Gavira JA, Krell T. Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites. Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18926-31. doi: 10.1073/pnas.1201400109. Epub 2012 Oct 29. PubMed PMID: 23112148; PubMed Central PMCID: PMC3503224.

30) Lacal J, Muñoz-Martínez F, Reyes-Darías JA, Duque E, Matilla M, Segura A, Calvo JJ, Jímenez-Sánchez C, Krell T, Ramos JL. Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol. 2011 Jul;13(7):1733-44. doi: 10.1111/j.1462-2920.2011.02493.x. Epub 2011 May 23. PubMed PMID: 21605304.

29) Lacal J, García-Fontana C, Callejo-García C, Ramos JL, Krell T. Physiologically relevant divalent cations modulate citrate recognition by the McpS chemoreceptor. J Mol Recognit. 2011 Mar-Apr;24(2):378-85. doi: 10.1002/jmr.1101. PubMed PMID: 21360620.

28) Lacal J, Alfonso C, Liu X, Parales RE, Morel B, Conejero-Lara F, Rivas G, Duque E, Ramos JL, Krell T. Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: differential chemotactic response towards receptor ligands. J Biol Chem. 2010 Jul 23;285(30):23126-36. doi: 10.1074/jbc.M110.110403. Epub 2010 May 24. PubMed PMID: 20498372; PubMed Central PMCID: PMC2906306.

Sensor kinases

27) Daddaoua A, Molina-Santiago C, de la Torre J, Krell T, Ramos JL. GtrS and GltR form a two-component system: the central role of 2-ketogluconate in the expression of exotoxin A and glucose catabolic enzymes in Pseudomonas aeruginosa. Nucleic Acids Res. 2014 Jul;42(12):7654-63. doi: 10.1093/nar/gku496. Epub 2014 Jun 11. PubMed PMID: 24920832; PubMed Central PMCID: PMC4081096.

26) Silva-Jiménez H, Ortega Á, García-Fontana C, Ramos JL, Krell T. Multiple signals modulate the activity of the complex sensor kinase TodS. Microb Biotechnol. 2015 Jan;8(1):103-15. doi: 10.1111/1751-7915.12142. Epub 2014 Jul 1. PubMed PMID: 24986263; PubMed Central PMCID: PMC4321377.

25) Silva-Jiménez H, García-Fontana C, Cadirci BH, Ramos-González MI, Ramos JL, Krell T. Study of the TmoS/TmoT two-component system: towards the functional characterization of the family of TodS/TodT like systems. Microb Biotechnol. 2012 Jul;5(4):489-500. doi: 10.1111/j.1751-7915.2011.00322.x. Epub 2011 Dec 27. PubMed PMID: 22212183; PubMed Central PMCID: PMC3815326.

24) Busch A, Lacal J, Martos A, Ramos JL, Krell T. Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13774-9. doi: 10.1073/pnas.0701547104. Epub 2007 Aug 10. PubMed PMID: 17693554; PubMed Central PMCID: PMC1959458.

23) Lacal J, Busch A, Guazzaroni ME, Krell T, Ramos JL. The TodS-TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. Proc Natl Acad Sci U S A. 2006 May 23;103(21):8191-6. doi: 10.1073/pnas.0602902103. Epub 2006 May 15. PubMed PMID: 16702539; PubMed Central PMCID: PMC1472451.

Transcriptional regulators

22) Rico-Jiménez M, Udaondo Z, Krell T, Matilla MA. Auxin-mediated regulation of susceptibility to toxic metabolites, c-di-GMP levels, and phage infection in the rhizobacterium Serratia plymuthica. mSystems. 2024 Jul 23;9(7):e0016524. doi: 10.1128/msystems.00165-24. Epub 2024 Jun 5. PubMed PMID: 38837409; PubMed Central PMCID: PMC11264596.

21) Rico-Jiménez M, Muñoz-Mira S, Lomas-Martínez C, Krell T, Matilla MA. Regulation of indole-3-acetic acid biosynthesis and consequences of auxin production deficiency in Serratia plymuthica. Microb Biotechnol. 2023 Aug;16(8):1671-1689. doi: 10.1111/1751-7915.14296. Epub 2023 Jun 22. PubMed PMID: 37345981; PubMed Central PMCID: PMC10364317.

20) Gavira JA, Rico-Jiménez M, Ortega Á, Petukhova NV, Bug DS, Castellví A, Porozov YB, Zhulin IB, Krell T, Matilla MA. Emergence of an Auxin Sensing Domain in Plant-Associated Bacteria. mBio. 2023 Feb 28;14(1):e0336322. doi: 10.1128/mbio.03363-22. Epub 2023 Jan 5. PubMed PMID: 36602305; PubMed Central PMCID: PMC9973260.

19) Arce-Rodríguez A, Nikel PI, Calles B, Chavarría M, Platero R, Krell T, de Lorenzo V. Low CyaA expression and anti-cooperative binding of cAMP to CRP frames the scope of the cognate regulon of Pseudomonas putida. Environ Microbiol. 2021 Mar;23(3):1732-1749. doi: 10.1111/1462-2920.15422. Epub 2021 Feb 16. PubMed PMID: 33559269.

18) Fernández M, Corral-Lugo A, Krell T. The plant compound rosmarinic acid induces a broad quorum sensing response in Pseudomonas aeruginosa PAO1. Environ Microbiol. 2018 Dec;20(12):4230-4244. doi: 10.1111/1462-2920.14301. Epub 2018 Sep 10. PubMed PMID: 30051572.

17) Matilla MA, Daddaoua A, Chini A, Morel B, Krell T. An auxin controls bacterial antibiotics production. Nucleic Acids Res. 2018 Nov 30;46(21):11229-11238. doi: 10.1093/nar/gky766. PubMed PMID: 30500953; PubMed Central PMCID: PMC6265452.

16) Daddaoua A, Corral-Lugo A, Ramos JL, Krell T. Identification of GntR as regulator of the glucose metabolism in Pseudomonas aeruginosa. Environ Microbiol. 2017 Sep;19(9):3721-3733. doi: 10.1111/1462-2920.13871. Epub 2017 Aug 24. PubMed PMID: 28752954.

15) Fernández M, Morel B, Ramos JL, Krell T. Paralogous Regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a Basis for Arsenic Biosensor Development. Appl Environ Microbiol. 2016 Jul 15;82(14):4133-4144. doi: 10.1128/AEM.00606-16. Print 2016 Jul 15. PubMed PMID: 27208139; PubMed Central PMCID: PMC4959201.

14) Corral-Lugo A, Daddaoua A, Ortega A, Espinosa-Urgel M, Krell T. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci Signal. 2016 Jan 5;9(409):ra1. doi: 10.1126/scisignal.aaa8271. PubMed PMID: 26732761.

13) Chavarría M, Durante-Rodríguez G, Krell T, Santiago C, Brezovsky J, Damborsky J, de Lorenzo V. Fructose 1-phosphate is the one and only physiological effector of the Cra (FruR) regulator of Pseudomonas putida. FEBS Open Bio. 2014;4:377-86. doi: 10.1016/j.fob.2014.03.013. eCollection 2014. PubMed PMID: 24918052; PubMed Central PMCID: PMC4050194.

12) Molina-Santiago C, Daddaoua A, Fillet S, Krell T, Morel B, Duque E, Ramos JL. Identification of new residues involved in intramolecular signal transmission in a prokaryotic transcriptional repressor. J Bacteriol. 2014 Feb;196(3):588-94. doi: 10.1128/JB.00589-13. Epub 2013 Nov 15. PubMed PMID: 24244009; PubMed Central PMCID: PMC3911149.

11) Daddaoua A, Krell T, Ramos JL. Transcriptional control by two interacting regulatory proteins: identification of the PtxS binding site at PtxR. Nucleic Acids Res. 2013 Dec;41(22):10150-6. doi: 10.1093/nar/gkt773. Epub 2013 Sep 9. PubMed PMID: 24019239; PubMed Central PMCID: PMC3905896.

10) Daddaoua A, Fillet S, Fernández M, Udaondo Z, Krell T, Ramos JL. Genes for carbon metabolism and the ToxA virulence factor in Pseudomonas aeruginosa are regulated through molecular interactions of PtxR and PtxS. PLoS One. 2012;7(7):e39390. doi: 10.1371/journal.pone.0039390. Epub 2012 Jul 23. PubMed PMID: 22844393; PubMed Central PMCID: PMC3402500.

9) Arce-Rodríguez A, Durante-Rodríguez G, Platero R, Krell T, Calles B, de Lorenzo V. The Crp regulator of Pseudomonas putida: evidence of an unusually high affinity for its physiological effector, cAMP. Environ Microbiol. 2012 Mar;14(3):702-13. doi: 10.1111/j.1462-2920.2011.02622.x. Epub 2011 Oct 31. PubMed PMID: 22040086.

8) Chavarría M, Santiago C, Platero R, Krell T, Casasnovas JM, de Lorenzo V. Fructose 1-phosphate is the preferred effector of the metabolic regulator Cra of Pseudomonas putida. J Biol Chem. 2011 Mar 18;286(11):9351-9. doi: 10.1074/jbc.M110.187583. Epub 2011 Jan 14. PubMed PMID: 21239488; PubMed Central PMCID: PMC3058975.

7) Daddaoua A, Krell T, Alfonso C, Morel B, Ramos JL. Compartmentalized glucose metabolism in Pseudomonas putida is controlled by the PtxS repressor. J Bacteriol. 2010 Sep;192(17):4357-66. doi: 10.1128/JB.00520-10. Epub 2010 Jun 25. PubMed PMID: 20581202; PubMed Central PMCID: PMC2937388.

6) Herrera MC, Krell T, Zhang X, Ramos JL. PhhR binds to target sequences at different distances with respect to RNA polymerase in order to activate transcription. J Mol Biol. 2009 Dec 4;394(3):576-86. doi: 10.1016/j.jmb.2009.09.045. Epub 2009 Sep 23. PubMed PMID: 19781550.

5) Daddaoua A, Krell T, Ramos JL. Regulation of glucose metabolism in Pseudomonas: the phosphorylative branch and entner-doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain. J Biol Chem. 2009 Aug 7;284(32):21360-8. doi: 10.1074/jbc.M109.014555. Epub 2009 Jun 8. PubMed PMID: 19506074; PubMed Central PMCID: PMC2755860.

4) Terán W, Felipe A, Fillet S, Guazzaroni ME, Krell T, Ruiz R, Ramos JL, Gallegos MT. Complexity in efflux pump control: cross-regulation by the paralogues TtgV and TtgT. Mol Microbiol. 2007 Dec;66(6):1416-28. doi: 10.1111/j.1365-2958.2007.06004.x. Epub 2007 Nov 5. PubMed PMID: 17986203.

3) Alguel Y, Meng C, Terán W, Krell T, Ramos JL, Gallegos MT, Zhang X. Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials. J Mol Biol. 2007 Jun 8;369(3):829-40. doi: 10.1016/j.jmb.2007.03.062. Epub 2007 Mar 30. PubMed PMID: 17466326; PubMed Central PMCID: PMC2756574.

2) Guazzaroni ME, Gallegos MT, Ramos JL, Krell T. Different modes of binding of mono- and biaromatic effectors to the transcriptional regulator TTGV: role in differential derepression from its cognate operator. J Biol Chem. 2007 Jun 1;282(22):16308-16. doi: 10.1074/jbc.M610032200. Epub 2007 Apr 6. PubMed PMID: 17416591.

1)Terán W, Krell T, Ramos JL, Gallegos MT. Effector-repressor interactions, binding of a single effector molecule to the operator-bound TtgR homodimer mediates derepression. J Biol Chem. 2006 Mar 17;281(11):7102-9. doi: 10.1074/jbc.M511095200. Epub 2006 Jan 5. PubMed PMID: 16407274.