In addition to this page you can also look into Pubmedia’s database (direct link).



Cerna-Vargas, J.P., Gumerov, V.M., Krell, T., Zhulin, I.B. (2023) Amine-recognizing domain in diverse receptors from bacteria and archaea evolved from the universal amino acid sensor. Proc Natl Acad Sci USA. 120:e2305837120. (Comment article: Dlakić M. 2023. Proc Natl Acad Sci USA 120:e2316830120)

Monteagudo-Cascales, E., Gumerov, V.M., Fernández, M., Matilla, M.A., Gavira, J.A., Zhulin, I.B., Krell, T. (2023) Ubiquitous purine sensor modulates diverse signal transduction pathways in bacteria. bioRxiv. 2023 Oct 26:2023.10.26.564149.

Xu, W. Cerna-Vargas, J.P., Tajuelo, A., Lozano-Montoya, A., Kivoloka, M., Krink, N., Monteagudo-Cascales, E., Matilla, M.A., Krell. T, Sourjik V. (2023) Systematic mapping of chemoreceptor specificities for Pseudomonas aeruginosa. mBio 14:e0209923.

Krell, T., Matilla, M.A. (2023) Microbe of the month: Pseudomonas aeruginosa. Trends Microbiol. S0966-842X(23)00324-4.

Cerna-Vargas JP, Sánchez-Romera B, Matilla MA, Ortega Á, Krell T. (2023) Sensing preferences for prokaryotic solute binding protein families. Microb Biotechnol. 16:1823-1833.

Matilla, M.A., Krell, T. (2023) Sensing the environment by bacterial plant pathogens: What do their numerous chemoreceptors recognize? Microb Biotechnol. doi: 10.1111/1751-7915.14368.

Krell T, Gavira JA, Roca A, Matilla MA (2023) The emerging role of auxins as bacterial signal molecules: Potential biotechnological applications. Microb Biotechnol. 16:1611-1615.

Matilla MA, Gavira JA, Krell T (2023) Accessing nutrients as the primary benefit arising from chemotaxis. Curr Opin Microbiol. 75:102358.

Matilla MA, Krell T (2023) Targeting motility and chemotaxis as a strategy to combat bacterial pathogens. Microb Biotechnol. doi: 10.1111/1751-7915.14306.

Rico-Jiménez M, Muñoz-Mira S, Lomas-Martínez C, Krell T, Matilla MA. (2023) Regulation of indole-3-acetic acid biosynthesis and consequences of auxin production deficiency in Serratia plymuthica. Microb Biotechnol. 16:1671-1689.

Monteagudo-Cascales E, Ortega Á, Velando F, Morel B, Matilla MA, Krell T. (2023) Study of NIT domain-containing chemoreceptors from two global phytopathogens and identification of NIT domains in eukaryotes. Mol Microbiol. 119:739-751.

Cerna-Vargas JP, Gumerov VM, Krell T, Zhulin IB (2023) Amine recognizing domain in diverse receptors from bacteria and archaea evolved from the universal amino acid sensor. bioRxiv.04.06.535858. doi: 10.1101/2023.04.06.535858.

Velando, F., Matilla, M.A., Zhulin, I.B., Krell, T. (2023) Three unrelated chemoreceptors provide Pectobacterium atrosepticum with a broad-spectrum amino acid sensing capability. Microb Biotechnol. doi: 10.1111/1751-7915.14255

Matilla, M.A., Genova, R, Martín-Mora, D., Maaβ, S., Becher, D., Krell, T. (2023) The Cellular Abundance of Chemoreceptors, Chemosensory Signaling Proteins, Sensor Histidine Kinases, and Solute Binding Proteins of Pseudomonas aeruginosa Provides Insight into Sensory Preferences and Signaling Mechanisms. Int. J. Mol. Sci. 24:1363.

Gavira, J.A., Rico-Jiménez, M., Ortega, Á., Petukhova, N.V., Bug, D.S., Castellví, A., Porozov, Y.B., Zhulin, I.B., Krell, T., Matilla, M.A. (2023) Emergence of an Auxin Sensing Domain in Plant-Associated Bacteria. mBio 14:e0336322.

Gálvez-Roldán, C., Cerna-Vargas, J.P., Rodriguez Herva, J.J., Krell, T., Santamaria-Hernando, S. & López-Solanilla, E. (2023) A NIT sensor domain containing chemoreceptor is required for a successful entry and virulence of Dickeya dadantii 3937 in potato plants. Phytopathology. 113:390-399.

Matilla, M.A., Monteagudo-Cascales, E., Cerna-Vargas, J.P., Gumerov, V., Zhulin, I.B., Krell, T. (2023) Is it possible to predict signal molecules that are recognized by bacterial receptors? Environ. Microbiol. 25:79-86.

Matilla MA, Monteagudo-Cascales E, Krell T. (2023) Advances in the identification of signals and novel sensing mechanisms for signal transduction systems. Environ. Microbiol. 25: 79-86.


Monteagudo-Cascales, E., Martín-Mora, D., Xu, W., Sourjik, V., Matilla, M.A. Ortega, A., Krell, T. (2022) The pH robustness of bacterial sensing. mBio e0165022.

Feng, H., Lv, Y., Krell, T., Fu, R., Liu, Y., Xu, Z., Du, W., Shen, Q., Zhang, N. Zhang, R. (2022) Signal binding at both modules of its dCache sensor domain enables the McpA chemoreceptor of Bacillus velezensis to sense different ligands. Proc. Natl. Acad. Sci USA 119:e2201747119

Santamaría-Hernando, S., López-Maroto, A., Galvez-Roldán, C., Munar-Palmer, M., Monteagudo-Cascales, E., Rodríguez-Herva, J.J., Krell, T., López-Solanilla, E. (2022)  Pseudomonas syringae pv. tomato infection of tomato plants is mediated by GABA and L-Pro chemoperception. Mol. Plant Pathol. doi: 10.1111/mpp.13238

Cerna-Vargas, J.P., Marcos-Torres, F.J.  (2022) Antidepressants: A new front in the war against antibiotics resistance. Environ. Microbiol. doi: 10.1111/1462-2920.16208

Ortega, A., Matilla, M.A., Krell, T. (2022) The repertoire of solute binding proteins of model bacteria reveals large differences in number, type and ligand range. Microbiol. Spectrum e0205422

Martín-Rodríguez, A.J., Thorell, K., Tellgren-Roth, C., Sjöling, A., Galperin, M.Y., Krell, T., Römling, U. (2022) Comparative genomics of cyclic di-GMP metabolism and chemosensory pathways of Shewanella algae strains: novel bacterial sensory domains and functional insights into lifestyle regulation. mSystems: e0151821.

Matilla, M.A., Krell, T. (2022) Noncanonical Sensing Mechanisms for Bacillus subtilis Chemoreceptors. J Bacteriol.: e0002722.

Gumerov, V.M., Andrianova, E.P., Matilla, M.A., Page, K.M., Monteagudo-Cascales, E. Dolphin, A.C., Krell, T. Zhulin, I.B. (2022) Amino acid sensor from bacteria to humans. Proc. Natl. Acad. Sci. USA 119: e2110415119.

Matilla, M.A., Velando, F., Tajuelo, A., Martín-Mora, D., Xu, W., Sourjik, V., Gavira, J.A., Krell, T. (2022) Chemotaxis of the human pathogen Pseudomonas aeruginosa to the neurotransmitter acetylcholine. mBio: e0345821

Rico-Jiménez, M., Roca, A., Krell, T., Matilla, M.A. (2022) A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones. Environ. Microbiol. doi: 10.1111/1462-2920.15920

Krell, T., Matilla, M.A. (2022) Antimicrobial resistance: progress and challenges in antibiotic discovery and anti-infective therapy. Microb. Biotechnol. 15: 70-78.

Matilla, M.A., Velando, F., Martín-Mora, D., Monteagudo-Cascales, E., Krell, T. (2022) A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev. 10.1093/femsre/fuab043.


Sanchis Lopez, C., Cerna-Vargas, J., Santamaria-Hernando, S., Ramos, C., Krell, T., Rodríguez-Palenzuela, P., López‐Solanilla, E., Huerta-Cepas, J., Rodriguez-Herva, J. (2021) Prevalence and Specificity of Chemoreceptor Profiles In Plant-Associated Bacteria. mSystems 6: e0095121

Feng, H., Fu, R., Hou, X. Yu Lv, Zhang, N., Liu, Y., Xu, Z., Miao, Y., Krell, T., Shen, Q., Zhang, R. (2021) Chemotaxis of Beneficial Rhizobacteria to Root Exudates: The First Step towards Root-Microbe Rhizosphere Interactions. Int. J. Mol. Sci. 21: 6312.

Tellgren-Roth, C., Thorell, K., Galperin, M., Krell, T., Römling, U., Sjöling, Å, Martín-Rodríguez, A.J. (2021) Complete genome sequence and methylome of the type strain of Shewanella algae. Microbiol. Resour. Announc. 10:e0055921.

Krell, T., Gavira, J.A., Velando, F., Fernández, M., Roca, A., Monteagudo-Cascales, E., Matilla, M. A. (2021) Histamine: A Bacterial Signal MoleculeInt. J. Mol. Sci. 22(12): 6312.

Matilla, M.A., Ortega, A., Krell, T. (2021) The role of solute binding proteins in signal transduction.  Comput. Struct. Biotechnol. J. 19:1786-1805.

Arce‐Rodríguez, A., Nikel, P.I., Calles, B., Chavarría, M., Platero, R., Krell, T., de Lorenzo, V. (2021) Low CyaA expression and anti-cooperative binding of cAMP to CRP frames the scope the of the cognate regulon of Pseudomonas putida. Environ. Microbiol. 23, 1732-1749.

Matilla, M.A., Martín-Mora, D., Gavira, J.A., Krell, T. (2021)  Pseudomonas aeruginosa as a model to study chemosensory pathway signaling. Microbiol. Mol. Biol. Rev. 85(1):e00151-20

Martín-Rodríguez, A.J., Reyes-Darias, J.A., Martín-Mora, D., González, J.M., Krell, T., Römling, U. (2021) Reduction of alternative electron acceptors drives biofilm formation in Shewanella algae. NPG Biofilms Microbiome 7:9

Gavira, J.A., Matilla, M.A., Fernández, M., Krell, T. (2021) The structural basis for signal promiscuity in a bacterial chemoreceptorFEBS J. 288: 2294-2310.


Gavira, J.A., Gumerov, V.M., Rico-Jiménez, M., Petukh, M., Upadhyay, A.A., Ortega, A., Matilla, M.A., Zhulin, I.B., Krell, T. (2020)  How bacterial chemoreceptors evolve novel ligand specificities. mBio 11:e03066-19.

Ortega, A., Krell, T. (2020) Chemoreceptors with C-terminal pentapeptides for CheR and CheB binding are abundant in bacteria that maintain host interactions. Comput. Struct. Biotechnol. J. 18:1947-1955.

Matilla, M.A., Martín-Mora, D., Krell, T. (2020) The use of Isothermal Titration Calorimetry to unravel chemotactic signaling mechanisms. Environ. Microbiol. 22:3005-3019.

Velando, F. Gavira, J.A., Rico-Jiménez, M., Matilla, M.A., Krell, T. (2020)  Evidence for pentapeptide dependent and independent CheB methylesterases. Int. J. Mol. Sci. 21:E8459.

Rubio-Gómez, J.M., Molina Santiago, C., Udaondo, Z., Tena Garitaonaindia, M., Krell, T., Ramos, J.L., Daddaoua, A. (2020)  Full transcriptomic approach of Pseudomonas aeruginosa to the fructooligosaccharides. Front. Microbiol. 11:202.


Martín-Mora D, Ortega Á, Matilla MA, Martínez-Rodríguez S, Gavira JA, Krell T. (2019) The Molecular Mechanism of Nitrate Chemotaxis via Direct Ligand Binding to the PilJ Domain of McpN. mBio 10:e02334-18.

Cerna-Vargas, J.P., Santamaría-Hernando, S., Matilla, M.A., Rodríguez-Herva, J.J., Daddaoua, A., Rodríguez-Palenzuela, P., Krell, T. López-Solanilla, E. (2019)  Chemoperception of specific amino acids controls phytopathogenicity in P. syringae pv. Tomato.  mBio 10:e01868-19.

Fernández, F., Rico-Jiménez, M., Ortega, A., Daddaoua, A., García García, A.I., Martín-Mora, N., Mesa Torres, N., Tajuelo, A., Matilla, M.A., Krell, T.(2019) Determination of ligand profiles for Pseudomonas aeruginosa solute binding proteins. Int. J. Mol. Sci. 20:E5156.

García-Fontana C, Vílchez JI, González-Requena M, González-López J, Krell T, Matilla MA, Manzanera M. (2019) The involvement of McpB chemoreceptor from Pseudomonas aeruginosa PAO1 in virulence. Sci. Rep. 9:13166.

Feng H, Zhang N, Fu R, Liu Y, Krell T, Du W, Shao J, Shen Q, Zhang R. (2019) Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteria. Environ. Microbiol. 21:402-415.

López-Farfán D, Reyes-Darias JA, Matilla MA, Krell T. (2019) Concentration Dependent Effect of Plant Root Exudates on the Chemosensory Systems of Pseudomonas putida KT2440. Front. Microbiol. 10:78.


Matilla M.A., Daddaoua A., Chini A., Morel B., Krell T. (2018). An auxin controls bacterial antibiotics production. Nucleic Acids Res. 46:11229-11238 46:11229-11238

Corral-Lugo A., Matilla M.A., Martín-Mora D., Silva Jiménez H., Mesa Torres N., Kato, J., Hida A., Oku S., Conejero-Muriel M., Gavira J.A., Krell T. (2018). High-affinity chemotaxis to histamine mediated by the TlpQ chemoreceptor of the human pathogen Pseudomonas aeruginosa. mBio 9:e01894-18.

Gavira J.A., Ortega A., Martín-Mora D., Conejero-Muriel M.T., Corral-Lugo A., Morel B., Matilla M.A., Krell T. (2018). Structural basis for polyamine binding at the dCACHE domain of the McpU chemoreceptor from Pseudomonas putida. J. Mol. Biol. 430:1950-1963.

Udaondo Z., Ramos J.L., Segura A., Krell T., Daddaoua A. (2018). Regulation of carbohydrate degradation pathways in Pseudomonas involves a versatile set of transcriptional regulators. Microb. Biotechnol. 11:442-454.

Fernández M., Corral-Lugo A., Krell T (2018). The plant compound rosmarinic acid induces a broad quorum sensing response in Pseudomonas aeruginosa PAO1. Environ. Microbiol. 20:4230-4244.

Matilla M.A, Krell T (2018). Plant Growth Promotion and Biocontrol Mediated by Plant-Associated BacteriaPlant Microbiome: Stress Response. MICRO, volume 5: 45-80.

Fernández M, Ortega Á, Rico-Jiménez M, Martín-Mora D, Daddaoua A, Matilla MA, Krell T (2018). High-Throughput Screening to Identify Chemoreceptor Ligands. Methods Mol. Biol. 1729:291-301.

Martín-Mora D, Ortega Á, Pérez-Maldonado FJ, Krell T, Matilla MA (2018) The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists. Sci. Rep. 8:2102.

Krell T. (2018) Exploring the (almost) unknown: archaeal two-component systems. J. Bacteriol. 200:e00774-17.

Matilla, M.A., Krell, T. (2018) The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev. 42:10.1093/femsre/fux052.

Krell, T. (2018) Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid interactions, Handbook of Hydrocarbon and Lipid Microbiology(book), ISBN 978-3-319-50541-1, 599 pp.

Matilla, M.A., Krell, T. (2018) Plant growth promotion and biocontrol mediated by plant associated bacteria. Plant Microbiome, Stress response, microorganisms for sustainability. Springer Nature, pp. 45-80 (D. Egamberdieva, P. Ahmad, eds.), ISBN 978-981-10-5513-3.

Krell, T. (2018) Sensing, Signaling and uptake: An Introduction. Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid interactions, Handbook of Hydrocarbon and Lipid Microbiology, Springer Nature, pp. 119-126 (T. Krell, editor),  ISBN 978-3-319-50541-1 (2018).

Busch, A., Mesa Torres, N., Krell, T. (2018) The family of two-componenet systems that regulate hydrocarbon degradation pathways. Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid interactions, Handbook of Hydrocarbon and Lipid Microbiology, Springer Nature, pp. 201-220. (T. Krell, editor), ISBN 978-3-319-50541-1.

Ortega, A., Segura, A., Bernal, P., Pini, C., Daniels, C., Ramos, J.L., Krell, T. (2018) Membrane Composition and Modifications in Response to Aromatic Hydrocarbons in Gram Negative Bacteria. Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid interactions, Handbook of Hydrocarbon and Lipid Microbiology, Springer Nature, pp. 373-384 (T. Krell, editor), ISBN 978-3-319-50541-1.

Fernández, M., Daniels, C., García, V., Cadirci, B., Segura, A., Ramos, J.L., Krell, T. (2018) Extrusion Pumps for Hydrocarbons: An Efficient Evolutionary Strategy to Confer Resistance to Hydrocarbons.  Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid interactions, Handbook of Hydrocarbon and Lipid Microbiology, Springer Nature, pp. 361-372 (T. Krell, editor), ISBN 978-3-319-50541-1.

Matilla, M.A., Daniels, C., del Castillo, T., Busch, A., Lacal, J., Segura, A., Ramos, J.L., Krell, T. (2018) Genetics of Sensing, Accessing and Exploiting Hydrocarbons. Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid interactions, Handbook of Hydrocarbon and Lipid Microbiology, Springer Nature, pp. 345-360 (T. Krell, editor), ISBN 978-3-319-50541-1.


Ortega, Á., Zhulin, I.B., Krell, T. (2017) Sensory Repertoire of Bacterial Chemoreceptors. Microbiol. Mol. Biol. Rev. 81: e00033-17.

Ortega, D.R., Fleetwood, A.D., Krell, T., Harwood, C.S., Jensen, G.J., Zhulin, I.B. (2017) Assigning chemoreceptors to chemosensory pathways in Pseudomonas aeruginosaProc. Natl. Acad. Sci. USA 114:12809-14. 

Daddaoua, A., Corral-Lugo, A., Ramos, J.L., Krell, T. (2017) Identification of GntR as regulator of the glucose metabolism in Pseudomonas aeruginosa. Environ. Microbiol. 19:3721-3733.

Bardy SL, Briegel A, Rainville S, Krell T. (2017) Recent advances and future prospects in bacterial and archaeal locomotion and signal transduction. J. Bacteriol. 199:e00203-17 .

Fernández M, Matilla MA, Ortega Á, Krell T. (2017) Metabolic Value Chemoattractants Are Preferentially Recognized at Broad Ligand Range Chemoreceptor of Pseudomonas putida KT2440Front. Microbiol. 31;8:990

Matilla MA, Krell T. (2017) Chemoreceptor-based signal sensing. Curr. Opin. Biotechnol. 45:8-14. 

Corral Lugo A, Daddaoua A, Ortega A, Morel B, Díez Peña AI, Espinosa-Urgel M, Krell T. (2017) Purification and characterization of Pseudomonas aeruginosa LasR expressed in acyl-homoserine lactone free Escherichia coli cultures. Prot. Expr. Purif. 130:107-114. 

Bueno E, Robles EF, Torres MJ, Krell T, Bedmar EJ, Delgado MJ, Mesa S. (2017) Disparate response to microoxia and nitrogen oxides of the Bradyrhizobium japonicum napEDABC, nirK and norCBQD denitrification genes. Nitric Oxide. 3:S1089-8603(16)30224-5. 

Reyes-Darias JA, Krell T. (2017) Riboswitches as Potential Targets for the Development of Anti-Biofilm Drugs. Curr. Top. Med. Chem. 17:1945-1953

Matilla MA, Udaondo Z, Krell T, Salmond GP. (2017) Genome Sequence of Serratia marcescens MSU97, a Plant-Associated Bacterium That Makes Multiple Antibiotics. Genome Announc. 5:e01752-16.


Rico-Jiménez M, Reyes-Darias JA, Ortega Á, Díez Peña AI, Morel B, Krell T. (2016) Two different mechanisms mediate chemotaxis to inorganic phosphate in Pseudomonas aeruginosa. Sci. Rep 6:28967.

Martín-Mora D, Ortega A, Reyes-Darias JA, García V, López-Farfán D, Matilla MA, Krell T. (2016) Identification of a Chemoreceptor in Pseudomonas aeruginosa That Specifically Mediates Chemotaxis Toward α-Ketoglutarate. Front .Microbiol. 7:1937. eCollection 2016.

López-Farfán D, Reyes-Darias JA, Krell T. (2016) The expression of many chemoreceptor genes depends on the cognate chemoeffector as well as on the growth medium and phase. Curr. Genet. 62:143-7. 

Fernández M, Morel B, Ramos JL and Krell T (2016) “The paralogous ArsR1 and ArsR2 regulators of Pseudomonas putida KT2440 as basis for arsenic biosensor development”. Appl. Environ. Microbiol. 82:4133-44.

Matilla MA, Drew A, Udaondo Z, Krell T and Salmond GP (2016) “Genome Sequence of Serratia plymuthica A153, a Model Rhizobacterium for the Investigation of the Synthesis and Regulation of Haterumalides, Zeamine, and Andrimid”. Genome Announc. 4:e00373-16.

Corral-Lugo A, Daddaoua A, Ortega A, Espinosa-Urgel M and Krell T (2016) So different and still so similar: The plant compound rosmarinic acid mimics bacterial homoserine lactone quorum sensing signals. Commun. Integr. Biol. 9:e1156832.

Matilla MA, Nogellova V, Morel B, Krell T, Salmond GP (2016) “Biosynthesis of the acetyl-CoA carboxylase-inhibiting antibiotic, andrimid, in Serratia is regulated by Hfq and the LysR-type transcriptional regulator, AdmX” Environ. Microbiol. 18:3635-3650.

Martín-Mora D, Reyes-Darias JA, Ortega A, Corral-Lugo A, Matilla MA, Krell T. (2016) McpQ is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexes. Environ. Microbiol.  18:3284-3295.

Corral-Lugo A, Daddaoua A, Ortega A, Espinosa-Urgel M, Krell T. (2016) Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci. Signal. 9(409):ra1.

Fernández M, Morel B, Corral-Lugo A, Rico-Jiménez M, Martín-Mora D, López-Farfán D, Reyes-Darias JA, Matilla MA, Ortega Á, Krell T. (2016) Identification of ligands for bacterial sensor proteins. Curr. Genet. 62:143-7.

Fernández M, Morel B, Corral-Lugo A, Krell T. (2016) Identification of a chemoreceptor that specifically mediates chemotaxis toward metabolizable purine derivatives. Mol.Microbiol. 99:34-42.

Corral-Lugo A, de la Torre J, Matilla MA, Fernández M, Morel B, Espinosa-Urgel M, Krell T. (2015) Assessment of the contribution of chemoreceptor-based signaling to biofilm formation. Environ. Microbiol. 18:3355-3372.

Krell, T. (2016) Two-component systems that control the expression of aromatic hydrocarbon degradation pathways.  Stress and Environmental Control of Gene Expression in Bacteria, John Wiley & Sons, Inc. pp. 249-256 (F.J. De Bruijn, editor).


García V, Reyes-Darias JA, Martín-Mora D, Morel B, Matilla MA, Krell T. Identification of a Chemoreceptor for C2 and C3 Carboxylic Acids (2015). Appl. Environ. Microbiol. 81:5449-57.

Krell T. (2015) Tackling the bottleneck in bacterial signal transduction research: high-throughput identification of signal molecules. Mol. Microbiol. 96:685-8.

Reyes-Darias JA, García V, Rico-Jiménez M, Corral-Lugo A, Lesouhaitier O, Juárez-Hernández D, Yang Y, Bi S, Feuilloley M, Muñoz-Rojas J, Sourjik V, Krell T. (2015). Specific gamma-aminobutyrate (GABA) chemotaxis in Pseudomonads with different lifestyle. Mol. Microbiol. 97:488-501.

Silva-Jiménez H, Ortega Á, García-Fontana C, Ramos JL, Krell T. (2015) Multiple signals modulate the activity of the complex sensor kinase TodS. Microb. Biotechnol. 8:103-15.

Reyes-Darias JA, Yang Y, Sourjik V, Krell T. (2015) Correlation between signal input and output in PctA and PctB amino acid chemoreceptor of Pseudomonas aeruginosaMol. Microbiol. 96:513-525.

Sampedro I, Parales RE, Krell T, Hill JE. (2015) Pseudomonas Chemotaxis. FEMS Microbiol. Rev. 39:17-46.


Mayola A, Irazoki O, Martínez IA, Petrov D, Menolascina F, Stocker R, Reyes-Darias JA, Krell T, Barbé J, Campoy S. (2014) RecA Protein Plays a Role in the Chemotactic Response and Chemoreceptor Clustering of Salmonella enterica. PLoS One 9:e105578.

Ortega A, Krell T. (2014) The HBM domain: Introducing bimodularity to bacterial sensing. Prot. Sci. 23: 332-336 .

Ortega-González M, Sánchez de Medina F, Molina-Santiago C, López-Posadas R, Pacheco D, Krell T, Martínez-Augustin O, Abdelali D. (2014) Fructooligosacharides Reduce Pseudomonas aeruginosa PAO1 Pathogenicity through Distinct Mechanisms. PLoS One. 9:e85772.

Molina-Santiago C., Daddaoua A., Fillet S., Krell T., Morel B., Duarte E., Ramos J.L. (2014) Identification of new residues involved in intramolecular signal transmission in a prokaryotic transcriptional repressor. J. Bacteriol. 196:588-594.

Daddaoua A, Molina-Santiago C, la Torre JD, Krell T, Ramos JL (2014) GtrS and GltR form a two-component system: the central role of 2-ketogluconate in the expression of exotoxin A and glucose catabolic enzymes in Pseudomonas aeruginosa. Nucleic Acids Res. 42:7654-65.

Chavarría M, Durante-Rodríguez G, Krell T, Santiago C, Brezovsky J, Damborsky J, de Lorenzo V. (2014) Fructose 1-phosphate is the one and only physiological effector of the Cra (FruR) regulator of Pseudomonas putida. FEBS Open Bio. 4:377-86.

Krell T, Lacal J, García-Fontana C, Silva-Jiménez H, Rico-Jiménez M, Lugo AC, Darias JA, Ramos JL. (2014) Characterization of molecular interactions using isothermal titration calorimetry. Methods Mol. Biol. 1149:193-203.

Darias JA, García-Fontana C, Lugo AC, Rico-Jiménez M, Krell T. (2014) Qualitative and quantitative assays for flagellum-mediated chemotaxis. Methods Mol. Biol. 1149:87-97.

García-Fontana C, Corral Lugo A, Krell T. (2014) Specificity of the CheR2 methyltransferase in Pseudomonas aeruginosa is directed by a C-terminal pentapeptide in the McpB chemoreceptor. Sci. Signal.7:ra34.


Rico-Jiménez M., Muñoz-Martínez F., Krell T., Gavira JA., Pineda-Molina E.(2013) Purification, crystallization and preliminary crystallographic analysis of the ligand-binding regions of the PctA and PctB chemoreceptors from Pseudomonas aeruginosa in complex with amino acids. Acta Crystallogr. Sect. F Struct. Biol. Cryst .Commun. 69:1431-5.

Sevilla E., Alvarez-Ortega C., Krell T., Rojo F. (2013) The Pseudomonas putida HskA hybrid sensor kinase responds to redox signals and contributes to the adaptation of the electron transport chain composition in response to oxygen availability. Environ. Microbiol. Rep. 5:825-34.

Daddaoua A., Krell T., Ramos J.L. (2013) Transcriptional control by two interacting regulatory proteins: identification of the PtxS binding site at PtxR. Nucleic Acids Res. 41:10150-6.

Rico-Jiménez M., Muñoz-Martínez F., García-Fontana C., Fernandez M., Morel B., Ortega A., Ramos J.L., Krell T. (2013) Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the non-protein amino acid gamma-aminobutyrate (GABA). Mol. Microbiol. 88:1230-1243.

Garcia-Fontana C., Reyes-Darias J.A., Munoz-Martinez F., Alfonso C., Morel B., Ramos J.L., Krell T. (2013) High specificity in CheR methyltransferase function: CheR2 of Pseudomonas putida is essential for chemotaxis whereas CheR1 is involved in biofilm formation. J. Biol. Chem. 288:18987-99.

Sevilla E, Silva-Jiménez H, Duque E, Krell T, Rojo F. (2013) The Pseudomonas putida HskA hybrid sensor kinase controls the composition of the electron transport chain. Environ. Microbiol. Rep. 5:291-300

Lacal, J., Reyes-Darias, J. A. García-Fontana, C., Ramos, J.L., Krell, T. (2013) Tactic responses to pollutants and its potential to increase biodegradation efficiency. J. Appl. Microbiol. 114: 923-33.

Krell, T., Lacal, J., Reyes-Darias, J. A., Jimenez-Sanchez, C., Sungthong, R., and Ortega-Calvo, J. J. (2013) Bioavailability of pollutants and chemotaxis, Curr. Opin.  Biotechnol. 24:451-456.


Pineda-Molina, E., Reyes-Darias, J.A., Lacal, J., Ramos, J.L., García-Ruiz, J.M., Gavira, J.A., Krell, T. (2012) Evidence for chemoreceptors with bimodular ligand binding regions harboring two signal-binding sites. Proc. Acad. Natl. Sci. USA. 109:18926-18931.

Pineda-Molina E., Daddaoua A., Krell T., Ramos J. L., Garcia-Ruiz J.M. and Gavira J.A. In situ X-ray data collection of highly sensitive crystals of P. putida PtxS in complex with DNA. Acta. cryst. Sect. F 68:1307-1310.

Muñoz-Martínez, F., García-Fontana, C., Rico-Jiménez, M., Alfonso, C. and Krell, T. (2012) Genes Encoding Cher-TPR Fusion Proteins Are Predominantly Found in Gene Clusters Encoding Chemosensory Pathways with Alternative Cellular Functions. PLoS One 7(9):e45810

Udaondo, Z., Duque, E., Fernandez, M., Molina, L., Torre Jde, L., Bernal, P., Niqui, J. L., Pini, C., Roca, A., Matilla, M. A., Antonia Molina-Henares, M., Silva-Jimenez, H., Navarro-Aviles, G., Busch, A., Lacal, J., Krell, T., Segura, A., and Ramos, J. L. (2012) Analysis of solvent tolerance in Pseudomonas putida DOT-T1E based on its genome sequence and a collection of mutants, FEBS Lett. 586, 2932-2938.

Segura, A., Molina, L., Fillet, S., Krell, T., Bernal, P., Munoz-Rojas, J., and Ramos, J. L. (2012) Solvent tolerance in Gram-negative bacteria, Curr. Opin. Biotechnol. 23:415-421.

Santamaria-Hernando, S., Krell, T., and Ramos-Gonzalez, M. I. (2012) Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins, PloS one 7:e40698.

Gavira, J. A., Lacal, J., Ramos, J. L., Garcia-Ruiz, J. M., Krell, T., and Pineda-Molina, E. (2012) Crystallization and crystallographic analysis of the ligand-binding domain of the Pseudomonas putida chemoreceptor McpS in complex with malate and succinate, Acta cryst. Sect. F  68:428-431.

Daddaoua, A., Fillet, S., Fernandez, M., Udaondo, Z., Krell, T., and Ramos, J. L. (2012) Genes for carbon metabolism and the ToxA virulence factor in Pseudomonas aeruginosa are regulated through molecular interactions of PtxR and PtxS, PloS One 7: e39390.

Krell T, Lacal J, Guazzaroni ME, Busch A, Silva-Jiménez H, Fillet S, Reyes-Darías JA, Muñoz-Martínez F, Rico-Jiménez M, García-Fontana C, Duque E, Segura A, Ramos JL. (2012) Responses of Pseudomonas putida to toxic aromatic carbon sources. J.  Biotechnol. 160:25-32

Silva-Jiménez H, Ramos JL, Krell T. (2012) Construction of a prototype two-component system from the phosphorelay system TodS/TodT. Protein Eng. Des. Sel. 25:159-69.

Silva-Jimenez, H., Garcia-Fontana, C., Cadirci, B. H., Ramos-Gonzalez, M. I., Ramos, J. L., and Krell, T. (2012) Study of the TmoS/TmoT two-component system: towards the functional characterization of the family of TodS/TodT like systems, Microb. Biotechnol. 5:489-500.

Arce-Rodriguez, A., Durante-Rodriguez, G., Platero, R., Krell, T., Calles, B., and de Lorenzo, V. (2012) The Crp regulator of Pseudomonas putida: evidence of an unusually high affinity for its physiological effector, cAMP. Environ. Microbiol. 14:702-13.


Chavarria, M., Santiago, C., Platero, R., Krell, T., Casasnovas, J. M., and de Lorenzo, V. (2011) Fructose 1-phosphate is the preferred effector of the metabolic regulator Cra of Pseudomonas putida, J. Biol. Chem. 286:9351-9359.

Desbat, B., Lancelot, E., Krell, T., Nicolai, M. C., Vogel, F., Chevalier, M., and Ronzon, F. (2011) Effect of the beta-Propiolactone Treatment on the Adsorption and Fusion of Influenza A/Brisbane/59/2007 and A/New Caledonia/20/1999 Virus H1N1 on a Dimyristoylphosphatidylcholine/Ganglioside GM3 Mixed Phospholipids Monolayer at the Air-Water Interface, Langmuir 27:13675-13683.

Fillet, S., Krell, T., Morel, B., Lu, D., Zhang, X., and Ramos, J. L. (2011) Intramolecular signal transmission in a tetrameric repressor of the IclR family. Proc. Natl. Acad. Sci. U S A 108:15372-15377.

Guichard, P., Krell, T., Chevalier, M., Vaysse, C., Adam, O., Ronzon, F., and Marco, S. (2011) Three dimensional morphology of rabies virus studied by cryo-electron tomography, J. Struct. Biol. 176:32-40.

Krell, T., Lacal, J., Munoz-Martinez, F., Reyes-Darias, J. A., Cadirci, B. H., Garcia-Fontana, C., and Ramos, J. L. (2011) Diversity at its best: bacterial taxis, Environ .Microbiol. 13:1115-1124.

Lacal, J., Munoz-Martinez, F., Reyes-Darias, J. A., Duque, E., Matilla, M., Segura, A., Calvo, J. J., Jimenez-Sanchez, C., Krell, T., and Ramos, J. L. (2011a) Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ. Microbiol. 13, 1733-1744.

Lacal, J., Garcia-Fontana, C., Callejo-Garcia, C., Ramos, J. L., and Krell, T. (2011b) Physiologically relevant divalent cations modulate citrate recognition by the McpS chemoreceptor. J. Mol. Recognit. 24:378-385.

Molina, L., Duque, E., Gomez, M. J., Krell, T., Lacal, J., Garcia-Puente, A., Garcia, V., Matilla, M. A., Ramos, J. L., and Segura, A. (2011) The pGRT1 plasmid of Pseudomonas putida DOT-T1E encodes functions relevant for survival under harsh conditions in the environment, Environ Microbiol. 13:2315-2327

Moreno, N., Chevalier, M., Ronzon, F., Manin, C., Dupuy, M., Krell, T., and Rieu, J. P. (2011) Unbinding forces of single pertussis toxin-antibody complexes measured by atomic force spectroscopy correlate with their dissociation rates determined by surface plasmon resonance, J. Mol. Recognit. 24:1105-1114.

Ramos, J. L., Marques, S., van Dillewijn, P., Espinosa-Urgel, M., Segura, A., Duque, E., Krell, T., Ramos-Gonzalez, M. I., Bursakov, S., Roca, A., Solano, J., Fernadez, M., Niqui, J. L., Pizarro-Tobias, P., and Wittich, R. M. (2011) Laboratory research aimed at closing the gaps in microbial bioremediation, Trends Biotechnol. 29:641-647.


Busch, A., Lacal, J., Silva-Jimenez, H., Krell, T., and Ramos, J. L. (2010) Catabolite repression of the TodS/TodT two-component system and effector-dependent transphosphorylation of TodT as the basis for toluene dioxygenase catabolic pathway control. J. Bacteriol. 192:4246-4250.

Daddaoua, A., Krell, T., Alfonso, C., Morel, B., and Ramos, J. L. (2010) Compartmentalized glucose metabolism in Pseudomonas putida is controlled by the PtxS repressor. J. Bacteriol. 192:4357-4366.

Daniels, C., Krell, T., Michan, C., and Ramos, J. L. (2010) Struggling to get a universal meningococcal vaccine and novel uses for bacterial toxins in cancer treatment, Microb. Biotechnol. 3:359-361.

Krell, T., Lacal, J., Busch, A., Silva-Jimenez, H., Guazzaroni, M. E., and Ramos, J. L. (2010) Bacterial sensor kinases: diversity in the recognition of environmental signals, Annu. Rev. Microbiol. 64:539-559.

Lacal, J., Alfonso, C., Liu, X., Parales, R. E., Morel, B., Conejero-Lara, F., Rivas, G., Duque, E., Ramos, J. L., and Krell, T. (2010a) Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: differential chemotactic response towards receptor ligands. J. Biol. Chem. 285:23126-23136.

Lacal, J., Garcia-Fontana, C., Munoz-Martinez, F., Ramos, J. L., and Krell, T. (2010b) Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environ. Microbiol. 12:2873-2884.

Lu, D., Fillet, S., Meng, C., Alguel, Y., Kloppsteck, P., Bergeron, J., Krell, T., Gallegos, M. T., Ramos, J., and Zhang, X. (2010) Crystal structure of TtgV in complex with its DNA operator reveals a general model for cooperative DNA binding of tetrameric gene regulators, Genes Dev. 24:2556-2565.


Busch, A., Guazzaroni, M. E., Lacal, J., Ramos, J. L., and Krell, T. (2009) The sensor kinase TodS operates by a multiple step phosphorelay mechanism involving two autokinase domains. J. Biol. Chem. 284:10353-10360.

Daddaoua, A., Krell, T., and Ramos, J. L. (2009) Regulation of glucose metabolism in Pseudomonas: the phosphorylative branch and entner-doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain- J. Biol. Chem. 284:1360-21368.

Daniels, C., Michan, C., Krell, T., Roca, A., and Ramos, J. L. (2009) The heat, drugs and knockout systems of microbial biotechnology, Microb. Biotechnol. 2:98-600.

Herrera, M. C., Krell, T., Zhang, X., and Ramos, J. L. (2009) PhhR binds to target sequences at different distances with respect to RNA polymerase in order to activate transcription. J Mol Biol 394:576-586.

Ramos, J. L., Krell, T., Daniels, C., Segura, A., and Duque, E. (2009) Responses of Pseudomonas to small toxic molecules by a mosaic of domains, Curr. Opin. Microbiol .12:215-220.


Barranco-Medina, S., Krell, T., Bernier-Villamor, L., Sevilla, F., Lazaro, J. J., and Dietz, K. J. (2008) Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o. J. Exp. Bot. 59:3259-3269.

Krell, T. (2008) Microcalorimetry: a response to challenges in modern biotechnology, Microb. Biotechnol. 1:126-136.

Lacal, J., Guazzaroni, M. E., Busch, A., Krell, T., and Ramos, J. L. (2008a) Hierarchical binding of the TodT response regulator to its multiple recognition sites at the tod pathway operon promoter. J. Mol. Biol. 376:325-337.

Lacal, J., Guazzaroni, M. E., Gutierrez-del-Arroyo, P., Busch, A., Velez, M., Krell, T., and Ramos, J. L. (2008b) Two levels of cooperativeness in the binding of TodT to the tod operon promoter. J. Mol. Biol384:1037-1047.


Alguel, Y., Meng, C., Teran, W., Krell, T., Ramos, J. L., Gallegos, M. T., and Zhang, X. (2007) Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials. J. Mol. Biol. 369:829-840.

Barranco-Medina, S., Krell, T., Finkemeier, I., Sevilla, F., Lazaro, J. J., and Dietz, K. J. (2007) Biochemical and molecular characterization of the mitochondrial peroxiredoxin PsPrxII F from Pisum sativum. Plant Physiol Biochem 45:729-739.

Busch, A., Lacal, J., Martos, A., Ramos, J. L., and Krell, T. (2007) Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals, Proc. Natl. Acad. Sci. U S A 104:13774-13779.

Guazzaroni, M. E., Gallegos, M. T., Ramos, J. L., and Krell, T. (2007a) Different modes of binding of mono- and biaromatic effectors to the transcriptional regulator TTGV: role in differential derepression from its cognate operator. J. Biol. Chem. 282:16308-16316.

Guazzaroni, M. E., Krell, T., Gutierrez del Arroyo, P., Velez, M., Jimenez, M., Rivas, G., and Ramos, J. L. (2007b) The transcriptional repressor TtgV recognizes a complex operator as a tetramer and induces convex DNA bending. J. Mol. Biol. 369:927-939.

Krell, T., Teran, W., Mayorga, O. L., Rivas, G., Jimenez, M., Daniels, C., Molina-Henares, A. J., Martinez-Bueno, M., Gallegos, M. T., and Ramos, J. L. (2007) Optimization of the palindromic order of the TtgR operator enhances binding cooperativity. J. Mol. Biol. 369:1188-1199.

Teran, W., Felipe, A., Fillet, S., Guazzaroni, M. E., Krell, T., Ruiz, R., Ramos, J. L., and Gallegos, M. T. (2007) Complexity in efflux pump control: cross-regulation by the paralogues TtgV and TtgT. Mol. Microbiol. 66:1416-1428.


Krell, T., Molina-Henares, A. J., and Ramos, J. L. (2006) The IclR family of transcriptional activators and repressors can be defined by a single profile. Prot. Sci 15:1207-1213.

Lacal, J., Busch, A., Guazzaroni, M. E., Krell, T., and Ramos, J. L. (2006) The TodS-TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. Proc. Natl. Acad. Sci. U S A 103:8191-8196.

Molina-Henares, A. J., Krell, T., Eugenia Guazzaroni, M., Segura, A., and Ramos, J. L. (2006) Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol. Rev. 30:157-186.

Teran, W., Krell, T., Ramos, J. L., and Gallegos, M. T. (2006) Effector-repressor interactions, binding of a single effector molecule to the operator-bound TtgR homodimer mediates derepression. J. Biol. Chem. 281:7102-7109.